ساخت نانو کاتالیست های پروسکایتی، به منظور استفاده در فرایند تبدیل ترکیبی خشک و اکسایش جزیی متان

thesis
abstract

با آغاز هزاره سوم، بررسی فرایند تبدیل خشک متان در روند تولید گاز سنتز (هیدروژن و کربن مونوکسید) مورد توجه پژوهشگران قرار گرفته است. مصرف گازهای گلخانه ای متان و کربن دی اکسید به عنوان خوراک واکنش و تولید گاز سنتز با نسبت مناسب به منظور تولید سوخت های مایع و مواد شیمیایی مورد نیاز صنعت از مهمترین مزیت های فرایند تبدیل خشک متان است. مصرف انرژی بالا و تولید کک، اصلی ترین مانع ها در مسیر صنعتی سازی این فرایند محسوب می شوند. انتخاب کاتالیست مناسب و افزودن اکسیژن در خوراک از جمله راه های موثر به منظور غلبه بر مشکلات یادشده هستند. در چند سال اخیر استفاده از نانو کاتالیست های پروسکایتی (abo3) در فرایند تبدیل متان به خاطر پایداری قابل توجه در برابر تشکیل کک، فعالیت کاتالیتیکی بالا،پایداری گرمایی در دماهای بالا،حضور کلیه اجزای ساختار کاتالیست در فرایند و نقش دو کاره کاتالیست های پروسکایتی هم در نقش پایه و هم فاز فعال از اهمیت قابل توجه ای برخوردار گردیده است. در این پژوهش سعی شده است از نانو کاتالیست های پروسکایتی جدید در فرایند ترکیبی تبدیل خشک و اکسایشی جزیی متان استفاده شود تا افزون بر تولید کک کمتر در راکتور, با تنظیم نسبت خوراک و شرایط عملیاتی نسبت دلخواه h2/co تولید شود. برای این منظور، در ابتدا کاتالیست های پروسکایتی جدید شامل عناصر laو sm در موقعیت a و عناصر انتقالی ni، co، fe و عنصر قلیایی خاکی mg در موقعیت b با روش بهبود یافته سل-ژل ساخته شد. در ادامه، سامانه میکرو راکتوری طراحی و ساخته شد و فعالیت کاتالیتیکی تمامی نمونه ها بر حسب درجه جانشانی، دما و زمان واکنش بررسی شدند و بهترین آن ها در شرایط متفاوت عملیاتی و نسبت های متفاوت خوراک انتخاب شدند. مشخصات فیزیکی و شیمیایی نمونه های ساخته شده پیش و پس از آزمون راکتوری با روش های تجزیه عنصری، پراش پرتو ایکس (xrd)، تجزیه گرماوزنی (tga)، کاهش برنامه ریزی شده گرمایی (tpr) تعیین شد. هم چنین مساحت سطح نمونه ها با روش bet اندازه گیری و ریخت شناسی آن ها با میکروسکوپ های الکترونی روبشی و عبوری (sem و tem) بررسی شد. نتیجه های به دست آمده نشان می دهند که روش بهبود یافته سل-ژل ، روشی مناسب به منظور ساخت نمونه های یادشده در مقیاس نانومتر و البته با سطح فعال پایین است و تغییر در روش ساخت به منظور افزایش سطح فعال باعث تغییر محسوسی در فعالیت کاتالیتیکی نمونه ها نخواهد شد. بررسی الگوهای پراش نمونه های lani1-xcoxo3، lani1-xfexo3 نشان می دهند همه نمونه ها، دارای ساختار پروسکایتی بلوری بدون هر گونه فاز آلوده کننده هستند. درحالی که الگوهای پراش نمونه های la1-xsmxnio3-? و lani1-xmgxo3 نشان می دهند که عناصر sm و mg را حداکثر به میزان 1/0 می توان در ساختار پروسکایتی lanio3 جانشانی کرد. بررسی آزمون های tpr نمونه ها نشان می دهند جانشانی عناصر co، fe و mg با ni و عنصر sm با la در ساختار lanio3 ، موجب افزایش پایداری گرمایی نمونه های ساخته شده می شود. در نمونه های lani1-xcoxo3، با افزایش میزان کبالت فعالیت کاتالیتیکی کاهش پیدا می کند. در نمونه های lani1-xfexo3، میزان فعالیت کاتالیتیکی نمونه ها به ترتیب زیر است: lanio3 > lani0.4fe0.6o3 > lani0.6fe0.4o3 > lani0.8fe0.2o3> lani0.2fe0.8o3 > lafeo3 برای نمونه های lani1-xmgxo3، فعالیت کاتالیتیکی نمونه ها به ترتیب زیر است: lanio3 > lani0.4mg0.6o3 > lani0.6mg0.4o3 > lani0.9mg0.1o3 > lani0.8mg0.2o3 > lamgo3 نمونه های la1-xsmxnio3-? به ازای جانشانی های 1/0، 9/0 و 1، بهترین عملکرد را نسبت به سایر نمونه ها از خود نشان می دهند.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

سنتز و شناسایی نانوکاتالیست‌های پروسکایتی Mg1-xZrxNiO3 به‌منظور استفاده در فرایند تبدیل خشک متان

نانوکاتالیست‌های پروسکایتی Mg1-xZrxNiO3 به روش سیترات سل-ژل سنتز شد. نمونه‌های ساخته شده با روش‌های پراش پرتو ایکس (XRD)، کاهش برنامه‌ریزی شده دمایی (TPR) و تجزیه‌ی عنصری به روش پلاسمای جفت شده القایی (ICP) شناسایی شدند. مساحت سطح نمونه‌ها با روش BET اندازه‌گیری شد. ریخت‌شناسی نمونه‌ها با میکروسکوپ الکترونی روبشی و عبوری (TEM و SEM) مورد بررسی قرار گرفت. بررسی الگوهای XRD نانوکاتالیست‌های سنتز ...

full text

مدل‌سازی فرایند تبدیل مستقیم و بدون کاتالیست متان به فرمالدهید با استفاده از ریزراکتورها

فناوری مرسوم برای تبدیل متان به فرمالدهید شامل سه مرحله هزینه‌بر، شلوغ و پیچیده تبدیل متان به گاز سنتز، تبدیل گاز سنتز به متانول و درنهایت اکسایش متانول به فرمالدهید است. این فناوری دستخوش نیاز شدید به کاتالیست و مرحله حد واسط پرهزینه و انرژی بر تولید گاز سنتز است و پیاده‌سازی واحدهای عملیاتی آن نیز تنها در مقیاس‌های بزرگ گاز طبیعی توجیه اقتصادی دارد. درحالی که تعداد زیادی منابع گاز طبیعی با ظر...

full text

مدل‌سازی فرایند تبدیل خشک متان به‌کمک پلاسما با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک

 پیش‌بینی فراورده‌های (هیدروژن و کربن مونوکسید) تبدیل خشک متان به‌کمک پلاسما در فشار جوی با استفاده از شبکه عصبی مصنوعی شبیه‌سازی شد. داده‌های تجربی موردنیاز برای مدل‌سازی شبکه عصبی مصنوعی از یک واکنشگاه پلاسمایی تخلیه کرونا جمع‌آوری شد. اثر عامل‌های فرایندی (توان تخلیه پلاسما، دبی خوراک ورودی) بر کارایی تبدیل متان و گزینش‌پذیری نسبت به فراورده‌های مورد بررسی قرار گرفتند. شبکه پیش‌خور با الگوری...

full text

بررسی عملکرد راکتور غشایی سرامیکی پروسکایتی BSCFO در اکسیداسیون جزیی متان جهت تولید گاز سنتز

مواد سرامیکی پروسکایتی BSCFO) Ba0.5Sr0.5Co0.8Fe0.2O3-δ) با استفاده از روش کمپلکس EDTA و اسید سیتریک سنتز و به شکل دیسکی شکل‌دهی شد و در راکتور غشایی استفاده گردید. عملکرد این غشاء راکتوری جهت بارگذاری کاتالیست Ni/α-Al2O3 فرآیند اکسیداسیون جزیی متان مورد بررسی قرار گرفت. در زمان‌های اولیه، شار عبور اکسیژن، میزان تبدیل متان و گزینش‌پذیری تولید CO وابستگی زیادی به حالت نیکل در کاتالیست (اکسیدی و ی...

full text

بررسی اثر جایگزینی جزیی کاتالیست نیکل در ریفورمینگ خشک متان

استفاده از روش منسوب به سل- ژل برای تهیه پیش سازنده های پروسکایت، به جامداتی همگن و بلورین منجر می گردد. این روش مواد بلورین فلزی تولید می کند که از نظر حرارتی پایداری بیشتری دارند. روش رزین سل- ژل بوسیله اسید پروپینیک مناسب برای سنتز محلول های جامد مربوط با ساختار پروسکایت گونه با درجه خلوص زیاد می باشد. جایگزینی جزیی ni بوسیله cu و zn در ساختار پروسکایت lanio3، به پروسکایت هایی منجر می گردد ک...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده مهندسی شیمی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023